

Agricultural Outlook Forum 2005.

Science, Policy, Markets-What's Ahead?

Crystal Gateway Marriott Hotel, Arlington, Virginia, 25 February 2005.

Biological Control: A Sustainable Management Option for Invasive Species

Ernest S. Delfosse
National Program Leader for Weed Science
USDA-Agricultural Research Service
Beltsville, MD

Goals

- 1. To provide a conceptual model for biological control in a risk analysis context; and
- 2. To develop a complex example of biological control using saltcedar, an invasive tree from Eurasia.

Some Pest Management Strategies

- Chemical: Insecticides, herbicides
- Mechanical: Weeders, machinery
- Cultural: Revegetation, timing
- Biological: Natural enemies
- Legal: Legislation
- IPM: Predictable combinations of strategies

What is Classical Biological Control?

The use of live natural enemies of a pest to reduce permanently its population level to below an environmental or economic threshold.

Biological Control: A Sustainable Management Option for Invasive species

Steps In A Classical Biological Control Program

- Initiation;
- Confirm identity and home range of target pest;
- Foreign exploration for natural enemies;
- Selection of high-priority natural enemies;
- Host-specificity testing;
- Importation and quarantine clearance;
- Release and evaluation/monitoring;
- Technology transfer; and
- Determination of success.

Theoretical Model of Biological Control

What is the "overall risk" to non-target species?

Risk vs. Host Range

Monophagy Oligophagy Polyphagy

Risk to Non-Target Species

Availability in Nature

A Complex Example

- The most difficult challenge to biological control is predicting the risk in the field from a natural enemy that attacks, in host-specificity tests, a nontarget species.
- Saltcedar, *Tamarix* spp., will be used as an example to illustrate the biological control process.

Cast of Characters

Saltcedar

Diorhabda elongata

SouthwesternWillow Flycatcher

The Saltcedar Biological Control Consortium and Its Operational Committees.

Project Co-Coordinators: Carruthers, DeLoach and Nibling

Over 60 Federal, State and Private Organizations
Participant Actively in the *Saltcedar Biological Control Consortium*!

Focus on Safety!

- Years of quarantine safety (host-specificity) testing ...
- ... followed by testing in field cages for several years before released in the wild.

Biological Control: A Sustainable Management Option for Invasive species

Diorhabda Population Increase

Research shows a 30x increase per generation!

Only 1,300 *Diorhabda elongata* were released into the open field in summer of 2001.

Remember the 30x population increase per generation.

Summary and Conclusions

- 1. Biological control, as the base strategy of integrated pest management, has been shown to safely control many weed and arthropod pests in the last 120 years;
- 2. The key criterion for implementing a program is safety of the biological control agents, so host-specificity testing and post-release monitoring are key; and
- 3. It is very important to have a diverse team of colleagues conducting the research and transferring the results to end users.

Questions?